منابع
Welch, D., Buonanno, M., Grilj, V. et al. Far-UVC light: A new tool to control the spread of airborne-me- diated microbial diseases. Sci Rep 8, 2752 (2018). https://doi.org/10.1038/s41598-018-21058-w
Buonanno, M., Welch, D., Shuryak, I. et al. Far-UVC light (222 nm) efficiently and safely inactivates air- borne human coronaviruses. Sci Rep 10, 10285 (2020). https://doi.org/10.1038/s41598-020-67211-2
Narita K, Asano K, Naito K, Ohashi H, Sasaki M, Morimoto Y, Igarashi T, Nakane A. 222-nm UVC inacti- vates a wide spectrum of microbial pathogens. J Hosp Infect. 2020 Mar 31:50195-6701(20)30129-8. doi: 10.1016/j.jhin.2020.03.030. Epub ahead of print. PMID: 32243946.
Barnard IRM, Eadie E, Wood K. Further evidence that far-UVC for disinfection is unlikely to cause erythe- ma or pre-mutagenic DNA lesions in skin. Photodermatol Photoimmunol Photomed. 2020 Nov;36(6):476- 477. doi: 10.1111/phpp.12580. Epub 2020 Jun 12. PMID: 32452563; PMCID: PMC7283666.
Mayer J, Greene T, Howell J, Ying J, Rubin MA, Trick WE, Samore MH; CDC Prevention Epicenters Pro- gram. Agreement in classifying bloodstream infections among multiple reviewers conducting surveillance. Clin Infect Dis. 2012 Aug;55(3):364-70. doi: 10.1093/cid/cis410. Epub 2012 Apr 26. PMID: 22539665..
Ramos CCR, Roque JLA, Sarmiento DB, Suarez LEG, Sunio JTP, Tabungar KIB, Tengco GSC, Rio PC, Hilario AL. Use of ultraviolet-C in environmental sterilization in hospitals: A systematic review on efficacy and safety. Int J Health Sci (Qassim). 2020 Nov-Dec;14(6):52-65. PMID: 33192232; PMCID: PMC7644456.
Eadie, E., Hiwar, W., Fletcher, L. et al. Far-UVC (222 nm) efficiently inactivates an airborne pathogen in a roomsized chamber. Sci Rep 12, 4373 (2022). https://doi.org/10.1038/s41598-022-08462-z
Holm, Christian & Jensen, Jacob & Skaarup, Søren & Fløe, Andreas & Hauschildt, Pernille & Joensen, Sara & Nielsen, Stine & Bendstrup, Elisabeth. (2021). Antimicrobial effect of filtered 222nm excimer lamps in a hospital waiting area. 10.1101/2021.09.03.21263096.
Sygehus Lillebælt (LinkedIn post April 2022). En delegation fra det officielle Thailand var i dag forbi Medicinsk Senge B i Kolding for at se på vores UVC lamper (222 nm).
10. Armellino D, Walsh TJ, Petraitis V, Kowalski W. Assessment of focused multivector ultraviolet disinfection withshadowless delivery using 5-point multisided sampling of patientcare equipment without manual- chemical disinfection. Am J Infect Control. 2019 Apr;47(4):409-414. doi: 10.1016/j.ajic.2018.09.019. Epub 2018 Nov 28. PMID: 30502110.
11. Benahmed AG, Gasmi A, Anzar W, Arshad M, Bjørklund G. Improving safety in dental practices during the COVID-19 pandemic. Health Technol (Berl). 2022;12(1):205-214. doi: 10.1007/s12553-021-00627-6. Epub 2022 Jan 10. PMID: 35036281; PMCID: PMC8743069.
12. Holtkamp, Derald & Johnson, Clayton & Koziel, Jacek & Li, Peiyang & Murray, Deb & Ruston, Chelsea & Stephan, Aaron & Torremorell, Montse & Wedel, Katie. (2020). Ultraviolet C (UVC) Standards and Best Practices for the Swine Industry.
13. U.S. Department of Agriculture. What bacteria are associated with chicken? (July 2019). https://ask.usda.
gov/s/article/What-bacteria-are-associated-with-chicken
14. U.S. Centers for Disease Control and Prevention. Salmonella. Page last reviewed: July 21, 2022. https://
www.cdc.gov/salmonella/index.html
15. U.S. Centers for Disease Control and Prevention. Salmonella Outbreaks Linked to Backyard Poultry. Post-
ed July 13, 2022. https://www.cdc.gov/salmonella/backyard poultry-06-22/index.html
16. U.S. Centers for Disease and Control Prevention. Current Bird Flu Situation in Poultry. age last reviewed:
March 16, 2022. https://www.cdc.gov/flu/avianflu/poultry.htm
17. Branco, J.R.O., Dallago, B.S.L. and Bernal, F.E.M.Efficiency of ultraviolet light for disinfection of fertile broiler eggs. Arquivo Brasileiro de Medicina Veterinária e Zootecnia [online]. 2021, v. 73, n. 05 [Accessed 23 August 2022], pp. 1137-1146. Available from: Epub 05 Nov 2021. ISSN 1678-4162. https://doi. org/10.1590/1678-4162-12279.
18. Hessling M, Haag R, Sieber N, Vatter P. The impact of far-UVC radiation (200-230 nm) on pathogens, cells, skin, and eyes – a collection and analysis of a hundred years of data. GMS Hyg Infect Control. 2021 Feb 16;16:Doc07. doi: 10.3205/dgkh000378. PMID: 33643774; PMCID: PMC7894148.
19. Fulton RW. Viral Diseases of the Bovine Respiratory Tract. Food Animal Practice. 2009:171-91. doi:
10.1016/B978-141603591-6.10042-9. Epub 2009 Nov 5. PMCID: PMC7151991.
20. Weiss M, Horzinek MC. Resistance of Berne virus to physical and chemical treatment. Vet Microbiol. 1986
Feb;11(1-2):41-9. doi: 10.1016/0378-1135(86)90005-2. PMID: 3518225; PMCID: PMC7117442.
21. Benedict, KM. Characteristics of biosecurity and infection control programs at veterinary teaching hospi- tals. J Am Vet Med Assoc. 2008 Sep 1;233(5):767-73. doi: 10.2460/javma.233.5.767. PMID: 18764716.
22. Browne, K. L., Crowley, J. D., Tan, C. J., O’Sullivan, C. B., & Walsh, W. R. (2021). Effect of ultraviolet-C light on the environmental bacterial bioburden in various veterinary facilities, American Journal of Veterinary Research, 82(7), 582-588. Retrieved Aug 23, 2022, from https://avmajournals.avma.org/view/journals/ ajvr/82/7/ajvr.82.7.582.xml
23. Pearce-Walker, JI. Investigation of the effects of an ultraviolet germicidal irradiation system on concen- trations of aerosolized surrogates for common veterinary pathogens. Am J Vet Res. 2020 Jun;81(6):506- 513. doi: 10.2460/ajvr.81.6.506. PMID: 32436797.
24. Jaynes RA, Thompson MC, Kennedy MA. Effect of ultraviolet germicidal irradiation of the air on the incidence of upper respiratory tract infections in kittens in a nursery. J Am Vet Med Assoc. 2020 Nov 1;257(9):929-932. doi: 10.2460/javma.257.9.929. PMID: 33064607.
25. Globesnewswire. Mobile Pet Care Market worth USD 1.2 billion by 2030, says Global Market Insights Inc.
June 02, 2022.
26. U.S. Food and Drug Administration. Food Irradiation: What You Need to Know. Content current as of: 02/17/2022. https://www.fda.gov/food/buy-store-serve-safe-food/food-irradiation-what-you-need-
know
27. Koca, Nurcan & Urgu, Müge & Oğul, Turkuaz. (2018). Ultraviolet Light Applications in Dairy Processing.
10.5772/intechopen.74291.
28. Sauders BD, D’Amico DJ. Listeria monocytogenes cross-contamination of cheese: risk throughout the food supply chain. Epidemiol Infect. 2016 Oct;144(13):2693-7. doi: 10.1017/S0950268816001503. Epub 2016 Jul 20. PMID: 27435307; PMCID: PMC9150401.
29. Choi, KH. Cheese Microbial Risk Assessments – A Review. Asian-Australas J Anim Sci. 2016 Mar;29(3):307-
14. doi: 10.5713/ajas.15.0332. Epub 2016 Mar 1. PMID: 26950859; PMCID: PMC4811779.
30. Chawla A, Lobacz A, Tarapata J, Zulewska J. UV Light Application as a Mean for Disinfection Applied in
the Dairy Industry. Applied Sciences. 2021; 11(16):7285. https://doi.org/10.3390/app11167285
31. L. Sheng, L. Wang. The microbial safety of fish and fish products: recent advances in understanding its sig- nificance, contamination sources, and control strategies. Compr. Rev. Food Sci. Food Saf., 20 (1) (2021), pp. 738-786, https://doi.org/10.1111/1541-4337.12671
32. Malayeri, Adel & Mohseni, Madjid & Cairns, Bill. (2016). Fluence (UV Dose) Required to Achieve Incre-
mental Log Inactivation of Bacteria, Protozoa, Viruses and Algae. IUVA News. 18. 4-6.
33. Chun, HH. Inactivation of foodborne pathogens in ready-to-eat salad using UV-C irradiation. Food Sci
Biotechnol 19, 547-551 (2010). https://doi.org/10.1007/s10068-010-0076-0
34. Allende A, McEvoy JL, Luo Y, Artes F, Wang CY. Effectiveness of twosided UV-C treatments in inhibiting natural microflora and extending the shelflife of minimally processed ‘Red Oak Leaf’ lettuce. Food Micro- biol. 2006 May;23(3):241-9. doi: 10.1016/j.fm.2005.04.009. Epub 2005 Jul 28. PMID: 16943010.
35. Janisiewicz, W., Takeda, F., Evans, B., & Camp, M. (2021). Potential of far ultraviolet (UV) 222 nm light for management of strawberry fungal pathogens. Crop Protection, 150. https://doi.org/10.1016/J.CRO- PRO.2021.105791
uvmedico
36. Esua, OJ. A Review on Individual and Combination Technologies of UV-C Radiation and Ultrasound in Postharvest Handling of Fruits and Vegetables. Processes. 2020; 8(11):1433. https://doi.org/10.3390/ pr8111433
37. Melini, Valentina & Melini, Francesca. (2018). Strategies to Extend Bread and GF Bread Shelf-Life: From Sourdough to Antimicrobial Active Packaging and Nanotechnology. Fermentation. 4. 10.3390/fermenta- tion4010009.
38. News 5 Cleveland. Cleveland-based charter bus company installing UV lighting that continually disin- fects buses. Posted on Dec 7, 2020. https://www.news5cleveland.com/open/cleveland-based-char- ter-bus-company-installing-uv-lighting-that-continually-disinfects-buses
39. The Sumter Item. Sumter Today: Cutting Edge Tech Comes to Sumter School Buses. Posted 15 Dec.
2021. https://fb.watch/euaqCIHBum/
40. World Health Organization. Influenza, 27 November 2009. https://www.who.int/europe/news-room/
fact-sheets/item/influenza
41. UV Medico. Let our lights improve your life. Posted August 2021. https://www.linkedin.com/feed/up-
date/urn:li:activity:6831133387915325440
42.
UV Medico. Park Hair Salon fights viruses with UV Medico’s far UV-C lamps. Posted October 2021. https://www.linkedin.com/feed/update/urn:li:activity:6859445766579109888
43. Cyprus Film Days International Festival. Awards 2022. Published April 18, 2022. https://www.cyprusfilm-
days.com/news/awards-2022/
44. B.T. Landsholdets coronatrick: Sådan snyder de smittekaos. Published Jan. 25, 2022. https://www.bt.dk/
haandbold/landsholdets-corona-trick-saadan-snyder-de-smittekaos
45. Codreanu, TA. Successful Control of an Onboard COVID-19 Outbreak Using the Cruise Ship as a Quar- antine Facility, Western Australia, Australia. Emerg Infect Dis. 2021 May;27(5):1279-1287. doi: 10.3201/ eid2705.204142. PMID: 33900170; PMCID: PMC8084514.
46. Zheng, L., Chen, Q., Xu, J. & Wu, F. (2016). Evaluation of intervention measures for respiratory dis- ease transmission on cruise ships. Indoor and Built Environment, 25 (8), 1267-1278. https://doi. org/10.1177/1420326X15600041.
47. Moriarty, LF. Public Health Responses to COVID-19 Outbreaks on Cruise Ships – Worldwide, Febru- ary-March 2020. MMWR Morb Mortal Wkly Rep. 2020 Mar 27;69(12):347-352. doi: 10.15585/mmwr. mm6912e3. PMID: 32214086; PMCID: PMC7725517.
48. Japanese National Institute of Infectious Disease. Field briefing: Diamond Princess COVID-19 cases. 2020. Feb 20 [cited 2020 Mar 1]. https://www.niid.go.jp/niid/en/2019-ncov-e/9407-covid-dp-fe-01. html
49. Dbouk T, Drikakis D. On airborne virus transmission in elevators and confined spaces. Phys Fluids (1994). 2021 Jan 1;33(1):011905. doi: 10.1063/5.0038180. Epub 2021 Jan 26. PMID: 33790526; PMCID: PMC7984422.
Hessling M, Haag R, Sieber N, Vatter P: The impact of far-UVC radiation (200-230 nm) on pathogens, cells, skin, and eyes – a collection and analysis of a hundred years of data. GMS Hyg Infect Control 2021, 16: Doc07.
Narita K, Asano K, Naito K, Ohashi H, Sasaki M, Morimoto Y, Igarashi T, Nakane A: 222-nm UVC inactivates a wide spectrum of microbial pathogens. J Hosp Infect 2020.
Buonanno M, Ponnaiya B, Welch D, Stanislauskas M, Randers-Pehrson G, Smilenov L, Lowy FD, Owens DM, Brenner DJ: Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light. Radiat Res 2017, 187(4):483-491.
Welch D, Buonanno M, Grilj V, Shuryak I, Crickmore C, Bigelow AW, Randers-Pehrson G, Johnson GW, Brenner DJ: Far-UVC light: A new tool to control the spread of airborne-mediated microbial diseases. Sci Rep 2018, 8(1):2752.
Schleusener J, Lohan SB, Busch L, Ghoreschi K, Ploch NL, May S, Vogel S, Eberle J, Meinke MC: Treatment of the Candida subspecies Candida albi- cans and Candida parapsilosis with two far-UVC sources to minimise mycoses in clinical practice. Mycoses 2023, 66(1):25-28.
Narita K, Asano K, Morimoto Y, Igarashi T, Nakane A: Chronic irradiation with 222-nm UVC light induces neither DNA damage nor epidermal lesions in mouse skin, even at high doses. PLoS One 2018, 13(7):e0201259.
Eadie E, Barnard IMR, Ibbotson SH, Wood K: Extreme Exposure to Filtered Far-UVC: A Case Study(†). Photochem Photobiol 2021, 97(3):527-531.
Fukui T, Niikura T, Oda T, Kumabe Y, Ohashi H, Sasaki M, Igarashi T, Kunisada M, Yamano N, Oe K et al: Exploratory clinical trial on the safety and bactericidal effect of 222-nm ultraviolet C irradiation in healthy humans. PLoS One 2020, 15(8):e0235948.
Yamano N, Kunisada M, Kaidzu S, Sugihara K, Nishiaki-Sawada A, Ohashi H, Yoshioka A, Igarashi T, Ohira A, Tanito M et al: Long-term Effects of 222- nm ultraviolet radiation C Sterilizing Lamps on Mice Susceptible to Ultraviolet Radiation. Photochem Photobiol 2020, 96(4):853-862.
Görlitz M, Justen L, Rochette PJ, Buonanno M, Welch D, Kleiman NJ, Eadie E, Kaidzu S, Bradshaw WJ, Javorsky E et al: Assessing the safety of new germicidal far-UVC technologies. Photochem Photobiol 2023.
Kaidzu S, Sugihara K, Sasaki M, Nishiaki A, Ohashi H, Igarashi T, Tanito M: Re-Evaluation of Rat Corneal Damage by Short-Wavelength UV Revealed Extremely Less Hazardous Property of Far-UV-C(†). Photochem Photobiol 2021, 97(3):505-516.
Sugihara K, Kaidzu S, Sasaki M, Ichioka S, Takayanagi Y, Shimizu H, Sano I, Hara K, Tanito M: One-year Ocular Safety Observation of Workers and Estimations of Microorganism Inactivation Efficacy in the Room Irradiated with 222-nm Far Ultraviolet-C Lamps. Photochem Photobiol 2022.
Eadie E, O’Mahoney P, Finlayson L, Barnard IRM, Ibbotson SH, Wood K: Computer Modeling Indicates Dramatically Less DNA Damage from Far-UVC Krypton Chloride Lamps (222 nm) than from Sunlight Exposure. Photochem Photobiol 2021, 97(5):1150-1154.